If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2.5t^2+30t+30=0
a = 2.5; b = 30; c = +30;
Δ = b2-4ac
Δ = 302-4·2.5·30
Δ = 600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{600}=\sqrt{100*6}=\sqrt{100}*\sqrt{6}=10\sqrt{6}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-10\sqrt{6}}{2*2.5}=\frac{-30-10\sqrt{6}}{5} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+10\sqrt{6}}{2*2.5}=\frac{-30+10\sqrt{6}}{5} $
| 12=3(3y^2+1) | | -4(2x-9)+6(-x+1)=-8x-5(3x-5/3) | | (2x+20)+(4x-30)+(3x-5)=180 | | 2/3w-19=-15 | | 29x2=0 | | 7t-15t-4t=112 | | 7x-13/4=9 | | C^2+5c+3=0 | | C*2+5c+3=0 | | 50+60+80+x=180 | | 8374-6812=t | | 8374-y=6812 | | 4(x-2)+5(5x+2)=2 | | x/2-3000+x/3-1000+4/x+600+x/5=x | | 10+2n=43 | | 9x-19=190 | | 82=2x+2(3x+5) | | 7t-15t-4t=126 | | 63=6x+3(3x+4) | | 3x-12=3x=5 | | 3x-12=3.x=5 | | 7x+4(x+9)=41 | | 6x+5(2x-7)=45 | | -14y-12=16y+24 | | 2x+5(4x-7)=75 | | 2x-4=13x+26 | | -(3+x)=-25.x=2 | | -53+x=-25.x=2 | | 2(4-x)=4.x=6 | | 1/(2x)-2/(5x)=1/(10x)-3 | | 8-5x-6=x-10.x=2 | | (2x+5)(x-9)=0 |